Hepatitis therapy: balance between defence and regeneration via Kupffer cells

An inflammation of the liver can have different causes: besides infections with hepatitis B virus (HBV) and hepatitis C virus (HCV), also other viruses such as cytomegalovirus (CMV) are able to trigger acute hepatitis. Sometimes hepatitis induces fever and flu-like symptoms, however, it may also damage the liver and might even result in acute liver failure. Yet, currently there is no general agreement on how acute hepatitis should be treated: Should the immune response against the viral pathogen be reinforced or rather inhibited? Scientists of the TWINCORE published new insights on processes involved in liver inflammation in the “Journal of Hepatology”: Type I interferons on the one hand limit viral replication and thereby help the immune cells to control the viral pathogen. On the other hand, type I interferons delay the regeneration of immune cells, which are important to adjust and maintain the immune balance within the liver during acute inflammation.

“So far, it was assumed that viral replication itself destroys the liver cells”, says Katharina Borst, scientist at the Institute for Experimental Infection Research. “Meanwhile we know that also local inflammatory processes can damage the liver.” And this is critical knowledge, because, if the inflammatory reaction and not the virus accounts for liver damage, one should not enhance the inflammation within the already inflamed organ by treatment with an inflammatory cytokine such as type I interferon. “On the other hand, in the clinical practice it is well established that type I interferon is an effective treatment during acute hepatitis and that it protects the liver”, argues Dr. Theresa Frenz, also scientist at the Institute for Experimental Infection Research. On a first glance this is a paradoxical situation, which needs clarification.Therefore, the scientists set out to understand the mechanism by which type I interferon works in the liver. To understand the local immune responses, they analyzed Kupffer cells, which are liver-resident scavenger cells of the immune system. The researchers used vaccinia virus to infect livers that either could or could not detect type I interferon, or in which only the Kupffer cells or the hepatocytes, the main cell type of the liver, could or could not detect type I interferon. “This experiment showed us that hepatocytes do not need type I interferon to combat viral infection, since we could not find differences, irrespective of whether we analyzed normal livers or livers in which only hepatocytes did not detect type I interferon” says Katharina Borst. “This is surprising, since hepatocytes are the main target cell for type for infection.”
However, type I interferon seems to be important for Kupffer cells, says Theresa Frenz: “We believe, that type I interferon triggers Kupffer cells to take up infected cells and undergo apoptosis (suicide) afterwards, since surprisingly, Kupffer cells disappear after infection.” The body replaces those lost Kupffer cells by scavenger cells, which develop from the bone marrow. Such cells are not “real” Kupffer cells, but they still take over similar tasks. Interestingly, this process is accelerated, if the bone marrow cells cannot sense type I interferon”, says Katharina Borst. “Obviously, type I interferon is very important to adjust the regulation of inflammatory processes.”

“We verified that therapeutic treatment of acute viral hepatitis with type I interferon is reasonable, since it activates local immune cells and helps to eliminate the virus”, concludes institute director Prof. Ulrich Kalinke. “However, in order to better support the regeneration of the inflamed liver, we need to learn more about the balance of enhancement and modulation of inflammation. This will be the basis to develop new therapeutic interventions for acute hepatitis.”

 

People involved

Dr. Julia Spanier

Postdoctoral Researcher

Infos & Contact
Jennifer Skerra

Jennifer Skerra

Technical Assistant

Infos & Contact
Ulrich Kalinke

Prof. Dr. Ulrich Kalinke

Executive Director

Infos & Contact

Publications

2018Journal of hepatology68 (4) : 682-690

Type I interferon receptor signaling delays Kupffer cell replenishment during acute fulminant viral hepatitis

Borst K, Frenz T, Spanier J, Tegtmeyer P, Chhatbar C, Skerra J, Ghita L, Namineni S, Lienenklaus S, Köster M, Heikenwaelder M, Sutter G, Kalinke U


Other posts

Judit Burgaya, Jenny Fiebig and Bamu Damaris

Better prediction of bacterial properties

News from the RESIST Cluster of Excellence

Read more
TWINCORE researcher Dr. Julie Sheldon in the laboratory next to a digital microscope

A major step for HCV research

Research team from Hannover adapts hepatitis C virus to infect mouse liver cells

Read more
Researcher Dr. Felix Mulenge in front of a computer

Better results through less stress

Researchers in Hannover have developed a new method for studying neuroinfections.

Read more